下面开始看源码。

HOG特征检测源码在opencv/sources/modules/object/src/hog.cpp  和 object.h文件里。

object.h文件里HOG检测代码如下:

HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //  // struct for detection region of interest (ROI) struct DetectionROI {    // scale(size) of the bounding box    double scale;    // set of requrested locations to be evaluated    vector
locations; // vector that will contain confidence values for each location vector
confidences; }; struct CV_EXPORTS_W HOGDescriptor { public: enum { L2Hys=0 }; enum { DEFAULT_NLEVELS=64 }; CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8), cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1), histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true), nlevels(HOGDescriptor::DEFAULT_NLEVELS) {} CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1, int _histogramNormType=HOGDescriptor::L2Hys, double _L2HysThreshold=0.2, bool _gammaCorrection=false, int _nlevels=HOGDescriptor::DEFAULT_NLEVELS) : winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize), nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma), histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold), gammaCorrection(_gammaCorrection), nlevels(_nlevels) {} //导入文本文件进行初始化 CV_WRAP HOGDescriptor(const String& filename) { load(filename); } HOGDescriptor(const HOGDescriptor& d) { d.copyTo(*this); } virtual ~HOGDescriptor() {} CV_WRAP size_t getDescriptorSize() const; CV_WRAP bool checkDetectorSize() const; CV_WRAP double getWinSigma() const; //virtual为虚函数,在指针或引用时起函数多态作用 CV_WRAP virtual void setSVMDetector(InputArray _svmdetector); virtual bool read(FileNode& fn); virtual void write(FileStorage& fs, const String& objname) const; CV_WRAP virtual bool load(const String& filename, const String& objname=String()); CV_WRAP virtual void save(const String& filename, const String& objname=String()) const; virtual void copyTo(HOGDescriptor& c) const; CV_WRAP virtual void compute(const Mat& img, CV_OUT vector
& descriptors, Size winStride=Size(), Size padding=Size(), const vector
& locations=vector
()) const; //with found weights output CV_WRAP virtual void detect(const Mat& img, CV_OUT vector
& foundLocations, CV_OUT vector
& weights, double hitThreshold=0, Size winStride=Size(), Size padding=Size(), const vector
& searchLocations=vector
()) const; //without found weights output virtual void detect(const Mat& img, CV_OUT vector
& foundLocations, double hitThreshold=0, Size winStride=Size(), Size padding=Size(), const vector
& searchLocations=vector
()) const; //with result weights output CV_WRAP virtual void detectMultiScale(const Mat& img, CV_OUT vector
& foundLocations, CV_OUT vector
& foundWeights, double hitThreshold=0, Size winStride=Size(), Size padding=Size(), double scale=1.05, double finalThreshold=2.0,bool useMeanshiftGrouping = false) const; //without found weights output virtual void detectMultiScale(const Mat& img, CV_OUT vector
& foundLocations, double hitThreshold=0, Size winStride=Size(), Size padding=Size(), double scale=1.05, double finalThreshold=2.0, bool useMeanshiftGrouping = false) const; CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs, Size paddingTL=Size(), Size paddingBR=Size()) const; CV_WRAP static vector
getDefaultPeopleDetector(); CV_WRAP static vector
getDaimlerPeopleDetector(); CV_PROP Size winSize; CV_PROP Size blockSize; CV_PROP Size blockStride; CV_PROP Size cellSize; CV_PROP int nbins; CV_PROP int derivAperture; CV_PROP double winSigma; CV_PROP int histogramNormType; CV_PROP double L2HysThreshold; CV_PROP bool gammaCorrection; CV_PROP vector
svmDetector; CV_PROP int nlevels; // evaluate specified ROI and return confidence value for each location void detectROI(const cv::Mat& img, const vector
&locations, CV_OUT std::vector
& foundLocations, CV_OUT std::vector
& confidences, double hitThreshold = 0, cv::Size winStride = Size(), cv::Size padding = Size()) const; // evaluate specified ROI and return confidence value for each location in multiple scales void detectMultiScaleROI(const cv::Mat& img, CV_OUT std::vector
& foundLocations, std::vector
& locations, double hitThreshold = 0, int groupThreshold = 0) const; // read/parse Dalal's alt model file void readALTModel(std::string modelfile); void groupRectangles(vector
& rectList, vector
& weights, int groupThreshold, double eps) const; }; CV_EXPORTS_W void findDataMatrix(InputArray image, CV_OUT vector
& codes, OutputArray corners=noArray(), OutputArrayOfArrays dmtx=noArray()); CV_EXPORTS_W void drawDataMatrixCodes(InputOutputArray image, const vector
& codes, InputArray corners); }
从上面可以知道 有两种方式进行HOG特征检测。

1.导入HOG特征文本数据检测

2.直接调用opencv里的HOG特征数据检测